

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Optimization of Solute Separation by Diafiltration

Paul Ng^a; John Lundblad^a; Gautam Mitra^a

^a Biochemical Development Cutter Laboratories, Inc., Berkeley, California

To cite this Article Ng, Paul , Lundblad, John and Mitra, Gautam(1976) 'Optimization of Solute Separation by Diafiltration', *Separation Science and Technology*, 11: 5, 499 — 502

To link to this Article: DOI: 10.1080/01496397608085339

URL: <http://dx.doi.org/10.1080/01496397608085339>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Optimization of Solute Separation by Diafiltration

PAUL NG, JOHN LUNDBLAD, and GAUTAM MITRA

BIOCHEMICAL DEVELOPMENT
CUTTER LABORATORIES, INC.
BERKELEY, CALIFORNIA 94710

Abstract

Preliminary consideration suggests that process time in diafiltration can be optimized. A mathematical derivation of the optimum time gives a surprisingly simple general relationship between the bulk concentration and the membrane surface concentration. Experimental values confirm that an optimum value can indeed be obtained.

Up to now, most plasma processors rely on lyophilization as the classical approach for the separation of ethanol from plasma proteins. Friedli and Kistler (1) and Dickson and Smith (2) have suggested that gel filtration is a practical alternative to lyophilization. Certain drawbacks such as small charge volume and inhibition of bacterial growth limit its applications.

We have evaluated diafiltration as a means of removing salt and alcohol. Experiments with an Amicon Thin-Channel TCF-10 System confirm that solute separation from plasma proteins falls exponentially with time following a first-order decay curve. Total time for diafiltration is determined by the ultrafiltrate flux and the total desired volume change. For the same amount of protein, the bulk concentration can be manipulated by adding an appropriate amount of buffer. While the use of low concentration is attractive in terms of higher flux, it must be counterbalanced by the

increase in permeate volume. Preliminary consideration suggested that an optimum concentration could be obtained to give a minimum amount of process time.

The film theory for mass transfer relates the local ultrafiltrate flux, J , to concentration of solute by the following relationship (3):

$$J = k \ln \frac{C_w - C_p}{C_b - C_p} \quad (1)$$

where k = local mass transfer coefficient for protein between the bulk solution and the membrane surface

C_w = concentration at the wall

C_p = concentration in the permeate

C_b = concentration in the bulk solution

For high membrane rejection, $C_w \gg C_p$, Eq. (1) becomes

$$J = k \ln \frac{C_w}{RC_b} \quad (2)$$

where R = rejection coefficient defined by $1 - (C_p/C_b)$

For a fixed amount of protein P , the total volume of permeate V is related to the number of changes, n , by

$$V = nP/C_b \quad (3)$$

Process time per unit area is

$$t = V/J$$

or

$$t = \frac{nP/C_b}{k \ln C_w/RC_b} \quad (4)$$

In order to optimize Eq. (4), the following assumptions are made:

- Constant C_w . Vilker et al. (4) have clearly demonstrated that the concentration at the membrane surface is merely the osmotic equivalent of the applied pressure.
- Constant k . For fully developed flow, k is a function of diffusivity (3). Colton et al. (5) have demonstrated that Eq. (2) holds for average bulk protein concentration between 1 to 20 g/100 ml. This suggested that a constant diffusivity can be used within these limits.

Differentiating t with respect to C_b ,

$$\frac{dt}{dC_b} = \frac{-nP}{kC_b^2 \ln(C_w/RC_b)} + \frac{nP}{kC_b^2 \ln(C_w/RC_b)^2} \quad (5)$$

By setting $dt/dC_b = 0$, Eq. (5) becomes

$$1 = \ln C_w/RC_b^*$$

or

$$C_b^* = C_w/Re \quad (6)$$

where C_b^* = optimum bulk protein concentration

Thus one could predict an optimum value if the membrane surface concentration and the rejection coefficient can be precisely measured. Conversely, C_w can be calculated from C_b^* . Above 800 molecular weight, a rejection coefficient of 1.0 can be used (6, 7), and Eq. (6) becomes

$$C_b^* = C_w/e \quad (7)$$

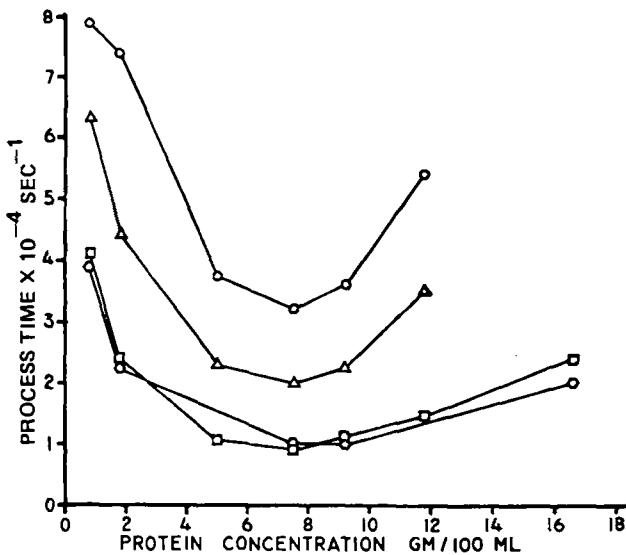


FIG. 1. Human serum albumin. Diafiltration at pH = 6.8, 22°C, and 25 psig. Shear rate per unit length (cm sec)⁻¹: (○) 119.9, (△) 225.4, (□) 326.1, (○) 431.6.

Extensive data of ultrafiltrate flux, protein content, and shear rate for albumin solution (M.W. 65,000) have been previously reported (8). Figure 1 is a plot of the process time (per unit area and per unit weight of protein) vs the protein concentration. Curves for all four shear rates converge to a minimum process time. This appeared to lie between 7 and 8 g/100 ml of protein concentration. Thus C_w is in the vicinity of 19.11 g/100 ml to 21.84 g/100 ml. This compares with literature values of 20 wt % or greater and 28.7 wt-% predicted by Bixler et al. (6) and by Colton et al. (5).

REFERENCES

1. H. Friedli and P. Kistler, "Removal of Ethanol from Albumin by Gel Filtration in the Manufacture of Human Serum Albumin Solutions for Clinical Use," *Chimica*, 26, 25 (1972).
2. A. J. Dickson and J. K. Smith, "Alternatives to Freeze Drying for the Removal of Ethanol from Plasma Proteins," *Vox Sanguins*, 28, 90 (1975).
3. R. P. deFillippi and R. L. Goldsmith, "Application and Theory of Membrane Processes for Biological and Other Macromolecular Solutions," in *Membrane Science and Technology* (J. E. Flinn, ed.), Plenum, New York, 1970, pp. 47-97.
4. V. L. Vilker, K. A. Smith, and C. K. Colton, "Concentration Polarization in Protein Ultrafiltration," Paper 102e presented at AIChE National Meeting, Los Angeles, November 1975.
5. C. K. Colton et al., "Kinetics of Hemodiafiltration. I, *In vivo* Transport Characteristics of a Hollow-Fiber Blood Ultrafilter," *J. Lab. Clin. Med.*, 85, 355 (1975).
6. H. J. Bixler, L. M. Nelson, and L. W. Bluemle, "The Development of a Diafiltration System for Blood Purification," *Trans. Am. Soc. Artif. Intern. Org.*, 14, 99 (1968).
7. L. W. Henderson, A. Besarab, A. Michaels, and L. W. Bluemle, "Blood Purification by Ultrafiltration and Fluid Replacement (Diafiltration)," *Ibid.*, 13, 216 (1967).
8. *Biochemical Development and Biochemical Research Departments Quarterly Progress Report*, Cutter Laboratories, July-September 1975.

Received by editor February 20, 1976